12 research outputs found

    The precision of textural analysis in 18F-FDG-PET scans of oesophageal cancer

    Get PDF
    Objectives: Measuring tumour heterogeneity by textural analysis in 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) provides predictive and prognostic information but technical aspects of image processing can influence parameter measurements. We therefore tested effects of image smoothing, segmentation and quantisation on the precision of heterogeneity measurements. Methods: Sixty-four 18F-FDG PET/CT images of oesophageal cancer were processed using different Gaussian smoothing levels (2.0, 2.5, 3.0, 3.5, 4.0 mm), maximum standardised uptake value (SUVmax) segmentation thresholds (45 %, 50 %, 55 %, 60 %) and quantisation (8, 16, 32, 64, 128 bin widths). Heterogeneity parameters included grey-level co-occurrence matrix (GLCM), grey-level run length matrix (GLRL), neighbourhood grey-tone difference matrix (NGTDM), grey-level size zone matrix (GLSZM) and fractal analysis methods. The concordance correlation coefficient (CCC) for the three processing variables was calculated for each heterogeneity parameter. Results: Most parameters showed poor agreement between different bin widths (CCC median 0.08, range 0.004–0.99). Segmentation and smoothing showed smaller effects on precision (segmentation: CCC median 0.82, range 0.33–0.97; smoothing: CCC median 0.99, range 0.58–0.99). Conclusions: Smoothing and segmentation have only a small effect on the precision of heterogeneity measurements in 18F-FDG PET data. However, quantisation often has larger effects, highlighting a need for further evaluation and standardisation of parameters for multicentre studies. Key points: • Heterogeneity measurement precision in 18 F-FDG PET is influenced by image processing methods. • Quantisation shows large effects on precision of heterogeneity parameters in 18 F-FDG PET/CT. • Smoothing and segmentation show comparatively smaller effects on precision of heterogeneity parameters

    Deep nested level sets: Fully automated segmentation of cardiac MR images in patients with pulmonary hypertension

    Get PDF
    In this paper we introduce a novel and accurate optimisation method for segmentation of cardiac MR (CMR) images in patients with pulmonary hypertension (PH). The proposed method explicitly takes into account the image features learned from a deep neural network. To this end, we estimate simultaneous probability maps over region and edge locations in CMR images using a fully convolutional network. Due to the distinct morphology of the heart in patients with PH, these probability maps can then be incorporated in a single nested level set optimisation framework to achieve multi-region segmentation with high efficiency. The proposed method uses an automatic way for level set initialisation and thus the whole optimisation is fully automated. We demonstrate that the proposed deep nested level set (DNLS) method outperforms existing state-of-the-art methods for CMR segmentation in PH patients

    Explainable Anatomical Shape Analysis through Deep Hierarchical Generative Models

    Get PDF
    Quantification of anatomical shape changes currently relies on scalar global indexes which are largely insensitive to regional or asymmetric modifications. Accurate assessment of pathology-driven anatomical remodeling is a crucial step for the diagnosis and treatment of many conditions. Deep learning approaches have recently achieved wide success in the analysis of medical images, but they lack interpretability in the feature extraction and decision processes. In this work, we propose a new interpretable deep learning model for shape analysis. In particular, we exploit deep generative networks to model a population of anatomical segmentations through a hierarchy of conditional latent variables. At the highest level of this hierarchy, a two-dimensional latent space is simultaneously optimised to discriminate distinct clinical conditions, enabling the direct visualisation of the classification space. Moreover, the anatomical variability encoded by this discriminative latent space can be visualised in the segmentation space thanks to the generative properties of the model, making the classification task transparent. This approach yielded high accuracy in the categorisation of healthy and remodelled left ventricles when tested on unseen segmentations from our own multi-centre dataset as well as in an external validation set, and on hippocampi from healthy controls and patients with Alzheimer's disease when tested on ADNI data. More importantly, it enabled the visualisation in three-dimensions of both global and regional anatomical features which better discriminate between the conditions under exam. The proposed approach scales effectively to large populations, facilitating high-throughput analysis of normal anatomy and pathology in large-scale studies of volumetric imaging

    Explainable anatomical shape analysis through deep hierarchical generative models.

    Get PDF
    Quantification of anatomical shape changes currently relies on scalar global indexes which are largely insensitive to regional or asymmetric modifications. Accurate assessment of pathology-driven anatomical remodeling is a crucial step for the diagnosis and treatment of many conditions. Deep learning approaches have recently achieved wide success in the analysis of medical images, but they lack interpretability in the feature extraction and decision processes. In this work, we propose a new interpretable deep learning model for shape analysis. In particular, we exploit deep generative networks to model a population of anatomical segmentations through a hierarchy of conditional latent variables. At the highest level of this hierarchy, a two-dimensional latent space is simultaneously optimised to discriminate distinct clinical conditions, enabling the direct visualisation of the classification space. Moreover, the anatomical variability encoded by this discriminative latent space can be visualised in the segmentation space thanks to the generative properties of the model, making the classification task transparent. This approach yielded high accuracy in the categorisation of healthy and remodelled left ventricles when tested on unseen segmentations from our own multi-centre dataset as well as in an external validation set, and on hippocampi from healthy controls and patients with Alzheimer's disease when tested on ADNI data. More importantly, it enabled the visualisation in three-dimensions of both global and regional anatomical features which better discriminate between the conditions under exam. The proposed approach scales effectively to large populations, facilitating highthroughput analysis of normal anatomy and pathology in largescale studies of volumetric imaging

    Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach

    Get PDF
    Deep learning approaches have achieved state-of-the-art performance in cardiac magnetic resonance (CMR) image segmentation. However, most approaches have focused on learning image intensity features for segmentation, whereas the incorporation of anatomical shape priors has received less attention. In this paper, we combine a multi-task deep learning approach with atlas propagation to develop a shape-constrained bi-ventricular segmentation pipeline for short-axis CMR volumetric images. The pipeline first employs a fully convolutional network (FCN) that learns segmentation and landmark localisation tasks simultaneously. The architecture of the proposed FCN uses a 2.5D representation, thus combining the computational advantage of 2D FCNs networks and the capability of addressing 3D spatial consistency without compromising segmentation accuracy. Moreover, the refinement step is designed to explicitly enforce a shape constraint and improve segmentation quality. This step is effective for overcoming image artefacts (e.g. due to different breath-hold positions and large slice thickness), which preclude the creation of anatomically meaningful 3D cardiac shapes. The proposed pipeline is fully automated, due to network's ability to infer landmarks, which are then used downstream in the pipeline to initialise atlas propagation. We validate the pipeline on 1831 healthy subjects and 649 subjects with pulmonary hypertension. Extensive numerical experiments on the two datasets demonstrate that our proposed method is robust and capable of producing accurate, high-resolution and anatomically smooth bi-ventricular 3D models, despite the artefacts in input CMR volumes

    Sex and regional differences in myocardial plasticity in aortic stenosis are revealed by 3D model machine learning

    No full text
    Aims: Left ventricular hypertrophy (LVH) in aortic stenosis (AS) varies widely before and after aortic valve replacement (AVR), and deeper phenotyping beyond traditional global measures may improve risk stratification. We hypothesized that machine learning derived 3D LV models may provide a more sensitive assessment of remodelling and sex-related differences in AS than conventional measurements. / Methods and results: One hundred and sixteen patients with severe, symptomatic AS (54% male, 70 ± 10 years) underwent cardiovascular magnetic resonance pre-AVR and 1 year post-AVR. Computational analysis produced co-registered 3D models of wall thickness, which were compared with 40 propensity-matched healthy controls. Preoperative regional wall thickness and post-operative percentage wall thickness regression were analysed, stratified by sex. AS hypertrophy and regression post-AVR was non-uniform—greatest in the septum with more pronounced changes in males than females (wall thickness regression: −13 ± 3.6 vs. −6 ± 1.9%, respectively, P < 0.05). Even patients without LVH (16% with normal indexed LV mass, 79% female) had greater septal and inferior wall thickness compared with controls (8.8 ± 1.6 vs. 6.6 ± 1.2 mm, P < 0.05), which regressed post-AVR. These differences were not detectable by global measures of remodelling. Changes to clinical parameters post-AVR were also greater in males: N-terminal pro-brain natriuretic peptide (NT-proBNP) [−37 (interquartile range −88 to −2) vs. −1 (−24 to 11) ng/L, P = 0.008], and systolic blood pressure (12.9 ± 23 vs. 2.1 ± 17 mmHg, P = 0.009), with changes in NT-proBNP correlating with percentage LV mass regression in males only (ß 0.32, P = 0.02). / Conclusion: In patients with severe AS, including those without overt LVH, LV remodelling is most plastic in the septum, and greater in males, both pre-AVR and post-AVR. Three-dimensional machine learning is more sensitive than conventional analysis to these changes, potentially enhancing risk stratification

    Septal hypertrophy in aortic stenosis and its regression after valve replacement is more plastic in males than females: insights from 3D machine learning approach

    No full text
    Background: Evaluation of left ventricular non-compaction (LVNC) is an increasingly common indication for cardiac magnetic resonance imaging (MRI). Fractal dimension (FD) is a unitless measure of geometrical complexity which can be used to quantify LV trabeculation. FD is increased in LVNC, but there have been few studies on FD in normal subjects. The aim of the study was to establish reference ranges for FD in a healthy population, and identify covariates which are associated with FD. Methods: MRI was performed in 1,913 volunteers without hypertension, diabetes, or heart disease (1055 female, 858 male; median age 40, range 19-82). FD was derived from LV short-axis images, using a custom MATLAB box-counting algorithm. The maximal FD in the apical half of the LV was used for all analyses, as previously described. Results: Normal ranges (2.5-97.5th percentile) for female and male subjects were 1.154 - 1.367 and 1.179 - 1.392, respectively. FD was significantly correlated with age, gender, ethnicity, body surface area (BSA), activity score, and systolic blood pressure. In multivariable analysis, FD was independently correlated with increased age (β 0.11, p<0.001), male gender (β 0.09, p<0.001), African/Afro-Caribbean ethnicity (β 0.18, p<0.001), increased BSA (β 0.27, p<0.001), and increased activity score (β 0.07, p=0.002). Since ethnicity was found to significantly affect FD, normal ranges were calculated for each subgroup (see table). Conclusions: This is the largest study on FD in healthy subjects, and the first to present gender- and race-specific normal ranges. The association between FD and age suggests that LV trabeculation is a dynamic phenotype which may change with age
    corecore